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Finite tidal waves propagated without change of shape 

By F. K. BALL 
C.S.I.R.O. Division of Meteorological Physics, Aspendale, Victoria, Australia 

(Received 11 June 1960) 

Coriolis terms are introduced into the equations governing the motion of a 
finite tidal wave. Various types of solution are found, all of which travel without 
change of shape and some which are periodic with sharp crests and broad troughs. 
The classical result that such waves cannot be propagated without change of 
shape is therefore untrue in these circumstances. 

1. Introduction 
The shallow water theory in its lowest approximation (i.e. tidal theory) has 

been applied with advantage not only to the study of long gravitational waves 
and tides but also to many problems of hydraulic engineering, particularly in 
connexion with flow in open channels. More recently applications of this type of 
theory have been made in meteorology (e.g. Abdullah 1949; Tepper 1950; 
Freeman 1951; Ball 1956, 1960), and it is certain that the usefulness of the 
theory in this context has not yet been adequately explored. 

In tidal theory one makes the basic assumption that the vertical accelerations 
are sufficiently small for the vertical pressure gradient to be regarded aa hydro- 
static. This implies that the horizontal pressure gradient is determined solely by 
the inclination of the free surface. These assumptions are appropriate when the 
depth is small compared with some other significant length, such aa for example 
the radius of curvature of the free surface. Now it is well known that under such 
conditions finite waves cannot be propagated without change of shape (e.g. SM 

Lamb 1932, p. 278). It will be shown here that when Coriolis terms are introdud 
into the equations of motion and an additional force Lwsumed so that geostrophic 
equilibrium can prevail, the resulting system haa B i t e  solutions which are 
propagated without change of shape; furthermore some of these solutions are 
periodic and represent an oscillation about geostrophic equilibrium. 

In geophysical applications an additional force is acting when the fluid flows 
on sloping ground or when it flows as a layer beneath a lighter fluid. In the former 
case the force is provided by gravity and geostrophic flow is parallel to the surface 
contours; in the latter case the force is provided by the (horizontal)pressure 
gradient in the upper fluid and geostrophic flow is parallel to the isobars. Both 
types of flow occur, for example, on the Antarctic Ice Cap where there is frequently 
a layer of very cold air in contact with the ice. This cold air flows under the 
combined influence of gravity and the superimposed pressure gradient, gravity 
usually being dominant when the slope of the ice exceeds about 2 x 10-8. 
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2. Basic equations 
We will assume that there are two liquid layers with densities p ,  and p1 

(p,  < p,) and that the interface is at a height H above the base of the lower 
layer, which in turn is at a height 2 above some fixed datum. The horizontal 
pressure gradient in the lower layer is then given by the sum of the superimposed 
pressure gradient in the upper layer and the gradient resulting from the slope 
of the interface. Thus V ,  p1 = V, p ,  + (p, - po)  gVl(H + 2) where V ,  denotes the 
horizontal gradient and the equations governing the motion of the lower layer 
can be written 

( 1 )  
aH a a 
at ax ay -+-((HU)+-(HV) = 0, 

a 
Dt Plax ax D' ~ =--- 1 apo-g*- ( H + Z ) + f V ,  

where g* is the modified gravitational acceleration, (pl -p,) g/pl, and f is the 
Coriolis parameter. Capital letters are here used to denote some of the variables, 
small letters being reserved for the corresponding dimensionless quantities 
introduced below. We now assume further that V,(p,/p, + g*Z) is constant (this 
expression represents the additional force mentioned in the introduction), and 
consequently the equations have a solution (geostrophic equilibrium) given by 

v = - -  -+g*z , fax a P I  ) 
where the equilibrium depth H = H, is constant. 

We wish to investigate simple solutions of equations (2) and (3) which represent 
disturbances propagated without change of shape and with constant velocity c 
in the X-direction under the influence of a constant external force of arbitrary 
direction. This force is represented for convenience by the geostrophic flow U,, V, 
which it would induce. We also assume that a disturbance has negligible variation 
in the Y-direction, and thus aH/aY, aU/aY and aV/aY a m  all equivalent to 
zero, and a/at is equivalent to - ca/aX. The equations then take the form 

where Q is a constant of integration representing physically the volume flow of 
the lower liquid relative to the moving system. 
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If we eliminate H from equations (7) and (8) by using equation (6), and make 
the substitutions u = ( U - c ) / q ,  v = (V-V,)/V,, x = Xf/U, and a = (U,-c)/U,, 
where U, is the ‘critical speed’ of mathematical hydraulics given by 27: = &g*, 
then the equations have the dimensionless form 

a v  
ax 

u- = a-u,  

with the equilibrium (geostrophic) solution v = 0, u = a. The direction of increas- 
ing X (and also x) has been so chosen that U -c  > 0; whence, since H > 0, we 
have Q > 0 and u > 0. 

The form of the solution of equations (9) and (10) depends on the value of the 
parameter a and the boundary condition (e.g. the condition that the solution 
passes through a particdar point in the (u, v)-plane, the origin of x being im- 
material). In  the folloxkng sections all possible types of solution will becon- 
sidered and the conditions under which periodic solutions can occur will be 
investigated in detail. 

3. Solution types 
The easiest way to determine the types of solution that can arise involves 

consideration of the ‘phase portrait ’, i.e. solution curves in the (u, v)-plane 
(i.e. the ‘phase plane’). To determine the form of the phase portraits we note 
the following facts. If we change the sign of both v and x, the form of the equations 
is unchanged; thus the phase portrait is symmetrical about the u-axis. The lines 
u = 0, u = 1, u = a and v = 0 divide the phase plane into regions within each of 
which duldx and dvldx have constant sign; furthermore on each of these lines 
one or other of dvldx and duldx is either zero or infinite. Making use of these 
facts it is a simple matter to sketch the phase portraits as in figure 1, the upper 
half plane u > 0 being the part of interest. There are three basically different 
patterns according as a > 1, 1 > a > 0 or 0 > a. The arrows give the direction 
of increasing x. 

The closed curves in figure 1 (a) correspond to the periodic solutions in which 
our main interest lies. These solutions are clearly periodic, for if one of these 
closed curves is followed in an anticlockwise direction then x continuously 
increases whereas u and v alternate regularly between their extreme values. On 
the other hand the closed curves in figures 1 ( b )  and 1 (c) do not correspond to 
simple periodic solutions since the direction of increasing x changes where the 
curves cross the line u = 1. The solutions corresponding to these curves form a 
series of closed loops in the (u,x)-plane. Furthermore it is certain that these 
solutions (and all others that cross the line u = 1 with a reversal of the direction 
of increasing x) are physically invalid in the neighbourhood of u = 1, not only 
because vertical accelerations are likely to be important there but als6 because 
the solution ‘turns back’ in a way which is physically inconsistent with our 
assumptions. 
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The lowest group of curves in figures 1 (a)  and 1 ( b )  correspond to a moving 
trough with maximum u (minimum H )  and a change in sign of v. Because of the 
superimposed pressure distribution the minimum of H does not necessarily 
coincide with minimum pressure. We do not propose to discuss this type of 
solution here. 

The only solution which is admissible over its whole range, apart from the 
periodic type and the trough type mentioned above, is the singular solution, in 
the form of a closed loop in the phase plane, indicated by the heavier line in 
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U 
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U 
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(a) 

0 V 

( 6 )  

FIQURE 1. Possible phase portraits: (a) a > 1; ( 6 )  1 > a > 0 ;  (c) 0 > a. 

figure 1 (a).  This solution is unique in that it crosses the line u = 1 without du/dx 
becoming infinite. It is also important because it forms the boundary of the 
periodic region, and the extreme values of u and v which occur on the loop 
give the upper and lower bounds of u and v which are possible in a periodic 
solution. 

4. The periodic solutions 
Equations (9) and (10) can readily be integrated once to a form which gives 

the analytic expression for the phase portrait, viz. by multiplying equation (9) 
by u - a and equation (10) by v,  adding and integrating to give 

v 2 + ( u - a ) 2 - a r s ) 2 ]  = E .  

The constant of integration E is a measure of the energy of the motion regarded 
as a disturbance of the geostrophic flow v = 0, u = a. The extreme values for 
a periodic solution are E = 0 corresponding to geostrophic equilibrium and 
E = (a - l)3/2a corresponding to the singular solution passing through the point 
v = 0, u = 1. The conditions for a simple periodic solution are therefore a 2 1, 
u > 1 and 
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The extreme values of v occur when u = a, and the maximum possible amplitude 
of 21 for a simple periodic solution is given by 

similarly the extreme values of u occur when 21 is zero, whence u lies in the range 

1 < u < (a-l)+[a(a-l)+l]k 

When the amplitude of the oscillation is small the solution curve in the phase 
plzm0 is a small ellipse centred on the point (0, a). A simple analytic solution can 
readily be found by linearizing the equations (9) and (10). The result is 

27Tx 
u - a  = Acos-, 

A 

a3-1 + . 2nx 
sin-, v = - A ( T )  

A 

where the wavelength h is given by 
h=2.(--) a3-1 4 . 

An analytic solution can also be found in the other extreme when 

E = (a- 1)3/2a 

and the wave hm maximum possible amplitude. We then have from equation (1 1) 

u - 1  2 
212 = (--) [a+ 2u(a- 1)-u2], 

whence from equation (9) 

Therefore 

where x is the distance from the wave crest (minimum u). Furthermore 

(sZ+s+ 1)ds 8 - a - 1  

[a(@ + 2s(a - 1) -@)I+ + +a-+ s - a - +$(a- - +[a+ 
l ) !  

29(a - 1) 4 ] t ) ,  

where p2 = a(a - 1) + 1. Therefore the wavelength is given by 

p+a-l (s2 + 8 + 1) ds 
s[a + 2s(a - 1) - 923i 

3a(a- l )}h+Za-l  

= 2 { a c o s - l ( 7 ) + a - - + l n / {  P 
A graph of this function, representing the dependence of the maximum possible 

wavelength on a, is shown in figure 2 together with a graph of the corresponding 
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function for waves of infinitesimal amplitude (equation (13)). When a is large 
we have h 2~ 2 m  for both inhitesimal and maximum amplitude. It appeam 
therefore that there is little change in wavelength with variation in amplitude. 

U 

FIGURE 2. Wavelength as a function of a. Upper curve: infinitesimal WaVd. 

Lower curve: wave of maximum amplitude. 

To express the actual wavelength L for the infinitesimal wave in terms of the 
physical variables, we note that 

The equilibrium depth is given by Hu = &/( U, - c ) ,  whence 

21r 
L = - [(Uu-c)Z-Hug*]k f 

When the wavelength is small this reduces to the usual expression for the velocity 
of tidal waves. 

More detailed investigation reveals that the waves have the following pro- 
perties. The wave of infinitesimal amplitude is harmonic in form. As the amplitude 
increases the wavelength decreases slightly, the troughs become broad and 
shallow and the crests narrow and sharp. The cross wave component changes 
rapidly from one extreme to another on the passage of a sharp crest. At maximum 
amplitude the wave crests become pointed, the points becoming so sharp for 
large values of a that the waves are almost cusped. Some of these properties are 
illustrated in figure 3. For completeness an ‘inadmissible’ periodic solution, 
corresponding to a closed curve in figure 1 (b), is illustrated in figure 4. As men- 
tioned in § 3, this and other solutions are physically invalid in the neighbourhobd 
of u = 1 (this does not, however, imply that the other parts of these solutions 
are necessarily invalid). 
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FIGURE 3. Typical wave forms; a = 2. Upper curves: profiles of h (= u-1) for 
large and small amplitude ; lower curves : corresponding profiles of &I. 
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FIGURE 4. A n  ‘inadmissible’ periodic solution; a = 0.5. 
Upper curve : profile of h ( = zc-l) ; lower curve : profile of v. 
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